Defining the scenario in year 2008

Q1. When & how to start?. Planning for life
Q2. When & how to switch?
Q3. Optimal use of old & new drugs. Role of strategic trials?
Q4. How to avoid repeating irreversible mistakes mostly in poor resource settings

Jose M Gatell
Hospital Clinic. Barcelona. Spain
gatell0@attglobal.net
ANTIRETROVIRAL THERAPY

VL

ART

blib

failure

salvage ART

100000

50

50-90%

30-70-90%
<table>
<thead>
<tr>
<th></th>
<th>no.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial therapy</td>
<td>378</td>
<td>12</td>
</tr>
<tr>
<td>Follow-up</td>
<td>2752</td>
<td></td>
</tr>
<tr>
<td>< 200 copies</td>
<td>2067</td>
<td>67</td>
</tr>
<tr>
<td>200–10000 copies</td>
<td>333</td>
<td>10</td>
</tr>
<tr>
<td>> 10000 copies</td>
<td>352</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>3130</td>
<td>100</td>
</tr>
</tbody>
</table>
Getting older with HIV

ACTIVE PATIENTS. H. CLINIC. BARCELONA

YEAR

PERCENTAGE

< 50 yr.

>50 yr.

- Graph showing the percentage of active patients over the years, comparing those over 50 years old and those under 50 years old.
• Significant reduction in mortality for HIV-infected patients over this period (P<0.001; ?² test for trend), but not for the general population (P<0.936; ?² test for trend)
HIV-1 infected adults with CD4 cell count > 500/mm3 on long-term ARV therapy reach same mortality rates as the general population

- Standardized mortality ratio (SMR) in 2435 HIV-infected adults, according to cumulated time spent with CD4 cell count between 350 and 499 /mm3 and > 500 /mm3, after the time of truncation $\$$.

ANRS CO8 APROCOCOPILOTE and ANRS CO3 AQUITAINE cohorts, 1997-2005

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}
\text{Time of truncation after initiation of cART (years)} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\text{SMR (CI)} & & & & & & & & & & \\
\end{array}
\]

- truncation : the time period taken into account starts 1, 2, 3, … years after initiation of cART

HIV-1: Clinical treatment. ART

Defining the scenario in year 2008
Q1. When & how to start?. Planning for life
Q2. When & how to switch?
Q3. Optimal use of old & new drugs. Role of strategic trials?
Q4. How to ovoid repeating irreversible mistakes mostly in poor resource settings
HIV-1: Clinical treatment. ART

Q1. When & how to start?. Planning for life

Earlier. All patients vs. special situations?
Clinical end points: non-AIDS events
Long term tolerance/convenience

How to start with “old” drugs/combinations
Role of new drugs. Added value vs. higher costs
Novel ART treatment strategies

Intermittent therapy

SMART: study design

participants with CD4+ > 350 cells/mm³

Virologic Suppression (VS) strategy
use of ART to maintain viral load as low as possible throughout follow-up

n = 3000

Drug Conservation (DC) strategy
stop or defer ART until CD4+ < 250; then episodic ART based on CD4+ cell count to increase counts to > 350

n = 3000

plan: 910 primary endpoints, 8 years average follow-up

findings (Jan 06): 164 primary endpoints, 14 months average follow-up, 2% lost to follow-up
Novel ART treatment strategies

Intermittent therapy

SMART: event rates

<table>
<thead>
<tr>
<th>Event</th>
<th>DC group</th>
<th>VS group</th>
<th>HR (DC/VS) [95% CI]</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary endpoint: OD or death</td>
<td>120</td>
<td>47</td>
<td>2.6 [1.9, 3.7]</td>
<td><0.001</td>
</tr>
<tr>
<td>Death</td>
<td>55</td>
<td>30</td>
<td>1.8 [1.2, 2.9]</td>
<td>0.007</td>
</tr>
<tr>
<td>Serious OD</td>
<td>13</td>
<td>2</td>
<td>6.6 [1.5, 29]</td>
<td>0.01</td>
</tr>
<tr>
<td>Non-serious OD</td>
<td>63</td>
<td>18</td>
<td>3.6 [2.1, 6.1]</td>
<td><0.001</td>
</tr>
<tr>
<td>Major CVD, renal and hepatic events</td>
<td>65</td>
<td>39</td>
<td>1.7 [1.1, 2.5]</td>
<td>0.009</td>
</tr>
<tr>
<td>Grade 4 events</td>
<td>173</td>
<td>148</td>
<td>1.2 [0.9, 1.5]</td>
<td>0.13</td>
</tr>
<tr>
<td>Grade 4 event or death</td>
<td>205</td>
<td>164</td>
<td>1.3 [1.03, 1.6]</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Novel ART treatment strategies

Intermittent therapy

SMART: OD and non-OD death by CD4+ count

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>No. of patients</th>
<th>Rate DC</th>
<th>VS</th>
<th>Relative Risk (95% CI)</th>
<th>P-Value Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatal and non-fatal OD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline CD4+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350-449</td>
<td>20</td>
<td>1.5</td>
<td>1.1</td>
<td>1.4</td>
<td>0.06</td>
</tr>
<tr>
<td>450-549</td>
<td>22</td>
<td>2.5</td>
<td>0.5</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>550-649</td>
<td>13</td>
<td>2.0</td>
<td>0.4</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>650+</td>
<td>40</td>
<td>2.2</td>
<td>0.4</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>Non-OD death</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline CD4+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350-449</td>
<td>22</td>
<td>1.7</td>
<td>1.1</td>
<td>1.6</td>
<td>0.33</td>
</tr>
<tr>
<td>450-549</td>
<td>12</td>
<td>1.2</td>
<td>0.4</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>550-649</td>
<td>13</td>
<td>1.5</td>
<td>0.9</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>650+</td>
<td>25</td>
<td>1.0</td>
<td>0.6</td>
<td>1.7</td>
<td></td>
</tr>
</tbody>
</table>

Favours DC favours VS
4. Evidence above 350 CD4’s. The guidelines

EACS June, 2008

- Risk benefit shifted toward earlier treatment
- Clinical benefit of:
 - Suppressing HIV replication
 - Maintaining CD4’s above 500

- cART >350 CD4’s:
 - Hep C & B reinfection
 - Pregnant women
 - HIV seronegative partner

Near 100% of the population
Hospital Clinic. Initial ART, N= 1886
CD4 Counts Are Low at Start of HAART

2003–2005

• 42 countries
• 176 sites
• 33 008 patients

Rates of most common OIs

<table>
<thead>
<tr>
<th>n (%)</th>
<th>Mycobact. TB</th>
<th>NH lymphoma</th>
<th>HIV wasting</th>
<th>CMV</th>
<th>PCP</th>
<th>Total OI events</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL<500c</td>
<td>9 (11%)</td>
<td>16 (20%)</td>
<td>6 (8%)</td>
<td>2 (3%)</td>
<td>8 (10%)</td>
<td>80</td>
</tr>
<tr>
<td>VL=500c</td>
<td>29 (10%)</td>
<td>29 (10%)</td>
<td>32 (11%)</td>
<td>30 (10%)</td>
<td>11 (4%)</td>
<td>295</td>
</tr>
<tr>
<td>VL=500nc</td>
<td>20 (12%)</td>
<td>14 (8%)</td>
<td>16 (10%)</td>
<td>8 (5%)</td>
<td>20 (12%)</td>
<td>165</td>
</tr>
</tbody>
</table>
Comparison of 903 vs 934
Total limb fat

Data on file, Gilead Sciences.
STARTMRK – Percent of Patients With HIV RNA <50 copies/mL (95% CI) (Non-Completer = Failure)

Percent of Patients with HIV RNA <50 Copies/mL

Number of Contributing Patients

- Raltegravir 400 mg b.i.d.*: 281, 279, 281, 279, 281, 279, 278, 280, 280
- Efavirenz 600 mg q.h.s.*: 282, 282, 282, 282, 281, 282, 280, 281

*In combination with TDF/FTC
STARTMRK – Change From Baseline in Fasting Serum Lipids Week 48

Lipid-Lowering Rx

<table>
<thead>
<tr>
<th></th>
<th>RAL* # (%)</th>
<th>EFV * # (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added Rx</td>
<td>3 (1)</td>
<td>11 (4)</td>
</tr>
<tr>
<td>Increased Rx</td>
<td>4 (1)</td>
<td>4 (1)</td>
</tr>
</tbody>
</table>

*In combination with TDF/FTC

‡p<0.001
Pacientes activos y tratados

![Graph showing the number of patients over years]

- **Active**
- **Treated**

Years: 1985 to 2007

Number of patients: 0 to 3500
HIV-1: Clinical treatment. ART

Defining the scenario in year 2008
Q1. When & how to start ?. Planning for life
Q2. When & how to switch ?
Q3. Optimal use of old & new drugs. Role of strategic trials ?
Q4. How to ovoid repeating irreversible mistakes mostly in poor resource settings
Q2. When & how to switch?

Stable and virologically suppressed patients still on suboptimal drugs/combinations

Failing patients: Always, planning for 100% response, selection and interpretation of resistance and tropism tests
<table>
<thead>
<tr>
<th></th>
<th>no.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial therapy</td>
<td>378</td>
<td>12</td>
</tr>
<tr>
<td>Follow-up</td>
<td>2752</td>
<td></td>
</tr>
<tr>
<td>< 200 copies</td>
<td>2067</td>
<td>67</td>
</tr>
<tr>
<td>200-10000 copies</td>
<td>333</td>
<td>10</td>
</tr>
<tr>
<td>> 10000 copies</td>
<td>352</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>3130</td>
<td>100</td>
</tr>
</tbody>
</table>

Hospital Clinic. Barcelona. 2007
Effect of Previous AZT Exposure on Total Limb Fat

Week 48 Change in Limb Fat by Years of Previous Exposure to AZT

- Median Changes in Limb Fat (kg)
 - Truvada: n=20, p=0.014
 - Combivir: n=18, p=0.13

- Comparison:
 - < 3 Years: 6.20
 - ≥ 3 Years: 3.68

- Median Baseline Limb Fat:
 - < 3 Years: 4.01
 - ≥ 3 Years: 5.41

- DEXA sub-study treated analysis set and sub-set of Whole Body Fat composition

- Median Baseline Limb fat

G Moyle, et al., CROI 2008; Poster #938
Salvage Antiretroviral Therapy

Dangerous situation

50-90%

30-70-90%
Acumulación de NAMs en estudio CNA-3005

Número de pacientes en %

Semanas de tratamiento tras fracaso virológico

Melby T. 8th CROI 2001. Abstract 448
Cohorte SCOPE: Riesgo de Cambio Tardío en la Terapia Antirretroviral Estable

- Pacientes con experiencia en Tratamiento (n=106)
 - ART estables durante ≥120 días
 - HIV-RNA >1000 c/ml
 - ≥1 resistencia por mutación
 - Pruebas de resistencia realizadas cada 4 meses

- Aparición de nuevas mutaciones a 1 año
 - Alguna mutación: 44%
 - NAM: 23%
 - IP: 18%

Figure 5. BENCHMRK-1 & -2 Combined Efficacy\(^\dagger\)
Percent of Patients with HIV RNA <50 copies/mL at Week 48 by PSS. Based on Upper and Lower cutoffs

<table>
<thead>
<tr>
<th>PSS</th>
<th>N</th>
<th>Percent of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSS = 0 (Based on lower cutoff)</td>
<td>65</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>2</td>
</tr>
<tr>
<td>PSS = 0 (Based on upper cutoff)</td>
<td>33</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>PSS = 1 (Based on lower cutoff)</td>
<td>137</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>69</td>
<td>29</td>
</tr>
<tr>
<td>PSS = 1 (Based on upper cutoff)</td>
<td>71</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>13</td>
</tr>
<tr>
<td>PSS ≥ 2 (Based on lower cutoff)</td>
<td>221</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>108</td>
<td>48</td>
</tr>
<tr>
<td>PSS ≥ 2 (Based on upper cutoff)</td>
<td>313</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>153</td>
<td>43</td>
</tr>
</tbody>
</table>

\(^\dagger\)Virologic failures carried forward

[Graph showing comparison between Raltegravir + OBT and Placebo + OBT]
Combined Efficacy* (1) – % Patients with HIV RNA < 400 copies/mL at Week 16 by Selected ARTs in OBT

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>n</th>
<th>% of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Efficacy Data</td>
<td>447</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>43</td>
</tr>
<tr>
<td>Efficacy by ARTs in OBT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enfuvirtide</td>
<td>44</td>
<td>98</td>
</tr>
<tr>
<td>+</td>
<td>23</td>
<td>87</td>
</tr>
<tr>
<td>+</td>
<td>42</td>
<td>90</td>
</tr>
<tr>
<td>-</td>
<td>24</td>
<td>63</td>
</tr>
<tr>
<td>-</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>+</td>
<td>47</td>
<td>55</td>
</tr>
<tr>
<td>-</td>
<td>191</td>
<td>74</td>
</tr>
<tr>
<td>-</td>
<td>90</td>
<td>29</td>
</tr>
</tbody>
</table>

+ : First Use in OBT
- : No Use in OBT

* Virological failures carried forward
HIV-1: Clinical treatment. ART

Defining the scenario in year 2008

Q1. When & how to start?. Planning for life
Q2. When & how to switch?
Q3. Optimal use of old & new drugs. Role of strategic trials?
Q4. How to avoid repeating irreversible mistakes mostly in poor resource settings
Q3. Optimal use of old & new drugs. Role of strategic trials?

Pharma companies focus on short term safety & non inferiority over gold standard

Strategic trials: resources, regulations
Treatment success and failure

Success: only significant difference: EFV vs NVP+EFV, p< 0.001

Failure component: (whichever comes first)

- change Rx
- disease progression
- virologic
- success

<table>
<thead>
<tr>
<th>Treatment</th>
<th>% of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVP-od</td>
<td>29.1</td>
</tr>
<tr>
<td></td>
<td>11.4</td>
</tr>
<tr>
<td>NVP-bd</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>18.9</td>
</tr>
<tr>
<td>EFV</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>15.3</td>
</tr>
<tr>
<td>NVP+EFV</td>
<td>34.5</td>
</tr>
<tr>
<td></td>
<td>16.3</td>
</tr>
</tbody>
</table>

Frank van Leth
NEVIRAPINE, EFAVIRENZ, OR ABACAVIR FOR SIMPLIFICATION OF EFFECTIVE PROTEASE INHIBITOR-BASED ANTI RETROVIRAL THERAPY

(The NEV/EFA/ABA Study)

1 yr / 3 yr Martinez et al NEJM, 2003 / CROI, 2006
NEV/EFA/ABA Study

Proportion of non-failing patients

ITT analysis ("conservative")

Failures: death, AIDS, or detectable viral load

generalized Log-rank test, P=0.020

<table>
<thead>
<tr>
<th>Medication</th>
<th>Patients</th>
<th>1 Year</th>
<th>2 Years</th>
<th>3 Years</th>
<th>4 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nevirapine</td>
<td>155</td>
<td>140</td>
<td>110</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Efavirenz</td>
<td>156</td>
<td>140</td>
<td>110</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Abacavir</td>
<td>149</td>
<td>121</td>
<td>98</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>
ACTG 5142: Outcomes at Week 96 (ITT)

- **EFV + 2 NRTIs** superior to **LPV/r + 2 NRTIs** in primary endpoints of
 - Time to virologic failure ($P = .006$)
 - Time to regimen completion ($P = .02$)
- **Protocol-defined threshold for significance:** $P < .016$

HIV-1: Clinical treatment. ART

Defining the scenario in year 2008
Q1. When & how to start ?. Planning for life
Q2. When & how to switch ?
Q3. Optimal use of old & new drugs. Role of strategic trials ?
Q4. How to ovoid repeating irreversible mistakes mostly in poor resource settings
REPUBLIQUE DU SENEGAL
MINISTERE DE LA SANTE
REGION MEDICALE DE LOUIS
DISTRICT SANITAIRE DE TOLL
CENTRE DE SANTE DE RO TOLL
BP 30
TEL: 963 31 09
FAX: 963 55 65
HIV-1: Clinical treatment. ART

Q4. How to avoid repeating irreversible mistakes mostly in poor resource settings

Lipoatrophy

Accumulation of resistance mutations

Clinical monitoring
1. Prevention
 Classical plus non-classical methods (circumcision)

2. Treatment
 Role of new drugs in naive patients?
 Most patients are virologically suppressed.
 Role of simplification?
 Goal of salvage therapy is < 50 copies/ml

3. General medical care in “old” patients

4. Supportive measures: mental health, nutrition...