SPATIOTEMPORAL EPIDEMIOLOGY
IN TB CONTROL

CARLA NUNES

GOALS OF THIS RESEARCH LINE AT ENSP

BACKGROUND

— TB in Portugal
— Spatiotemporal epidemiology - definition

4 CASE STUDIES

— Identification of areas of risk of incidence - methodological
— Identification of risk areas of incidence and associated factors
— Identification of factors associated with treatment dropout
— Identification of factors associated with longer diagnostic times

CONCLUSIONS
Motivation

— Contribute to knowledge in the area of spatial epidemiology, in particular spatiotemporal clustering / modeling processes, and their value in Public Health;

— Contribute to the knowledge on the control of Tuberculosis and its determinants, in particular for sustained and scientifically robust local interventions.

Goals

— Describe / develop / discuss / apply spatiotemporal processes, strengths and limitations;
— Define critical points in the control of tuberculosis in Portugal and identify the associated local determinants.
 — Incidence, failure treatment (including drop-out), delay until diagnosis, diagnosis, contact screening and mortality (Brazil)

Setting: Portugal

TB NOTIFICATION AND INCIDENCE RATE (10^5)
PTB Incidence Rate (10^5) MUNICIPALITIES, 2000-2015

Spatial unit: municipalities (278)
Individual information
(2000-....)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Indicator</th>
<th>Numerator</th>
<th>Denominator</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTB</td>
<td>Incidence rate /100,000</td>
<td>New notified PTB cases / (2004-2006)</td>
<td>2005 resident population</td>
<td>DGH</td>
</tr>
<tr>
<td>Overcrowded accommodation</td>
<td>Percentage of overcrowded</td>
<td>Overcrowded primary family residence</td>
<td>Primary family residence</td>
<td>NIS (2001 Census)</td>
</tr>
<tr>
<td></td>
<td>accommodation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-standard accommodation</td>
<td>Percentage of non-standard</td>
<td>Non-standard primary family residence</td>
<td>Primary family residence</td>
<td>NIS (2001 Census)</td>
</tr>
<tr>
<td></td>
<td>accommodation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working-age</td>
<td>Percentage of working-age</td>
<td>Working-age individuals with no education</td>
<td>Resident working age population (15-64 years)</td>
<td>NIS (2001 Census)</td>
</tr>
<tr>
<td>individuals with no</td>
<td>individuals with no education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no-education level</td>
<td>Unemployment rate</td>
<td>Unemployed population</td>
<td>Resident working age population (15-64 years)</td>
<td>NIS (2001 Census)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-qualified workers</td>
<td>Percentage of non-qualified</td>
<td>Non-qualified workers employed</td>
<td>Population employed</td>
<td>NIS (2001 Census)</td>
</tr>
<tr>
<td></td>
<td>workers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prison population</td>
<td>Prison population /100,000</td>
<td>Prison population (average 2004-2006)</td>
<td>2005 resident population estimates</td>
<td>MIP/GPS</td>
</tr>
<tr>
<td></td>
<td>Immigrants</td>
<td>Immigrants</td>
<td>2005 resident population estimates</td>
<td>NIS (2001 Census)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WHO, 2008</td>
</tr>
</tbody>
</table>

Ecological information

SEMINAR

SPATIOTEMPORAL EPIDEMIOLOGY IN TB CONTROL

GOALS OF THIS RESEARCH LINE AT ENSP

BACKGROUND

— TB in Portugal
— Spatiotemporal epidemiology - definition

4 CASE STUDIES

— Identification of areas of risk of incidence - methodological
— Identification of risk areas of incidence and associated factors
— Identification of factors associated with treatment dropout
— Identification of factors associated with longer diagnostic times

CONCLUSIONS
Epidemiology is the study of the distribution and determinants of health-related states or events (including disease), and the application of these results to the control of diseases and other health problems.

Assumptions

- Health phenomena do not occur at random in the population;
- The unequal distribution of health phenomena is the product of the action of factors that distribute unequally in the population;
- Knowledge of the determinants of health phenomena allows the application of intervention actions.

Spatiotemporal epidemiology

Elliot e Watenberg, 2004

Spatial epidemiology is the description and analysis of geographically indexed health data with respect to demographic, environmental, behavioral, socioeconomic, genetic, and infectious risk factors.

AND TIME!!!!!!
Epidemic of cholera (John Snow, 1854)

GOALS OF THIS RESEARCH LINE AT ENSP

BACKGROUND

— TB in Portugal
— Spatiotemporal epidemiology - definition

4 CASE STUDIES

— Identification of areas of risk of incidence - methodological
— Identification of risk areas of incidence and associated factors
— Identification of factors associated with treatment dropout
— Identification of factors associated with longer diagnostic times

CONCLUSIONS
IDENTIFICATION OF AREAS OF RISK (methodological challenge)

There is a causal source (agent) or a risk factor that generates an excessive increase of cases in a region. Outbreaks: infectious agents, environmental contamination, fragile socio-economic conditions, ...;

Objective: to evaluate the spatial pattern of the data, verifying whether the variation in space and time is random or not, and to identify critical areas.

Types of approaches: global (Moran I), local (Spatial Scan Statistics, Lisa), ...

Case study I

Spatial clusters

Let $N(Z)$ – One variable that represents a count of a phenomenon occurring in Z.

For each location and for each window:

- **Spatial Scan Statistics**
 - $N(Z) \sim F(p)$
 - $N(Z^c) \sim F(q)$

- **Space-Time Scan Statistics**
 - $H_0: p = q$ vs $H_1: p > q$

(Kulldorf, 1997)
Case study I

Spatial clusters

SPATIAL SCAN STATISTICS

Advantages:
- can be adjusted by population density;
- can be adjusted by other variables;
- search all location and considering all dimensions;
- statistically robust: it uses the likelihood ratio and Monte Carlo simulations;
- easy to implement and interpret.

Disadvantages:
- rigid window shapes;
- results very sensitive to the parameters used;
- VALIDATION: there is no real / true. Innovation: Proposal of a validation process through geostatistical simulation.

CLUSTERS: Windows shapes

- Circular windows
- Eliptical windows (ratio = 1.5, 2, 3, 4, 5)
 Nº of angles (4, 6, 12, 15)
- Eliptical windows (semivariogram)
Spatial dependency occurs when the value of a variable at a point in space is related to its value at nearby points;

Semivariogram – to evaluate spatial dependency.

\[
\gamma(h) = \frac{1}{2} E \left\{ \left[Z(x) - Z(x + h) \right]^2 \right\}
\]

\[
\gamma^*(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} \left[Z(x_i) - Z(x_i + h) \right]^2
\]

Case study I

CLUSTERS: Windows shapes

GEOESTATISTICAL SIMULATION

Geostatistical simulation as an independent process of validating clusters:

\[
anisotropy \; ratio = \frac{143000}{89000} = 1.6
\]
Case study I

CLUSTERS: Windows shapes

Geoestatistical Validation

<table>
<thead>
<tr>
<th>Model</th>
<th>Cluster</th>
<th>Angle Ratio</th>
<th>Time-period</th>
<th>Obs/Exp</th>
<th>Notified cases</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>0/1</td>
<td>2000-2004</td>
<td>1.54</td>
<td>5286</td>
<td><0.001</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>0/1</td>
<td>2000-2004</td>
<td>1.71</td>
<td>2686</td>
<td><0.001</td>
</tr>
<tr>
<td>I</td>
<td>3/5/8</td>
<td>0/1</td>
<td>2002</td>
<td>1.14</td>
<td>11262</td>
<td>0.45</td>
</tr>
<tr>
<td>II</td>
<td>4</td>
<td>84/5</td>
<td>2000-2004</td>
<td>1.27</td>
<td>14645</td>
<td>0.08</td>
</tr>
<tr>
<td>III</td>
<td>6</td>
<td>0/1.6</td>
<td>2000-2004</td>
<td>1.75</td>
<td>2780</td>
<td><0.001</td>
</tr>
<tr>
<td>III</td>
<td>7</td>
<td>90/1.6</td>
<td>2000-2004</td>
<td>1.68</td>
<td>5024</td>
<td><0.001</td>
</tr>
<tr>
<td>III</td>
<td>9</td>
<td>0/1</td>
<td>2003-2004</td>
<td>6.10</td>
<td>668</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Circular windows

Eliptical windows

(ratio = 1.5, 2, 3, 4, 5)
Nº of angles (4, 6, 12, 15)

Eliptical windows

(semivariogram)
Case study II

Overcrowding
HIV/AIDS
Non-standard accommodation
Working-age individuals with no education level
Non-qualified workers
Unemployment
Prison population
Immigrants

Pulmonary tuberculosis and risk factors in Portugal: a spatial analysis
L. Couceiro, P. Santana, C. Nunes

Spatial clustering
Correlation

Validation (Logistic reg)
local intervention
Risk map

Ecological approach

Pulmonary TB
Literature Review
HIV/AIDS
Overcrowding
Non-standard accommodation
Working-age individuals with no education level
Non-qualified workers
Unemployment
Prison population
Immigrants
CLUSTERS: DETERMINANTS

VALIDATION:
Similar Areas (with Risk ≥ 3)
Nagelkerke $R^2 = 0.678$,
Sensitivity=81.8%,
Specificity= 96.9%,
ROC = 0.95
RESULTS

<table>
<thead>
<tr>
<th>City</th>
<th>TB</th>
<th>HIV/AIDS</th>
<th>Overcrowding</th>
<th>Non-standard accom.</th>
<th>Unemployment</th>
<th>Prison population</th>
<th>Immigrants</th>
<th>“Risk”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porto</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Matosinhos</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Lisboa</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Loures</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Odívelas</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Amadora</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Oeiras</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lisboa</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>0</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Case study II

IDENTIFICATION OF FACTORS ASSOCIATED WITH DEFAULT TREATMENT

- Previous study based on individual factors but measured at ecological level
- In this study: considered individual factors and, after that, the presence (or not) of a significant spatial component

Case study III

IDENTIFICATION OF FACTORS ASSOCIATED WITH DEFAULT TREATMENT

- Previous study based on individual factors but measured at ecological level
- In this study: considered individual factors and, after that, the presence (or not) of a significant spatial component

SHORT REPORT

Who are the patients that default tuberculosis treatment? – space matters!

C. Nunes, R. Duarte, A. M. Veiga, and B. Taylor
ESTUDO DE CASO

III

RESULTADOS

- Study developed in the critical areas previously identified (Lisbon and Porto)
- In this study: individual factors
- Spatial survival analysis (R, Spatsurv)

Table: Odds ratio

<table>
<thead>
<tr>
<th>Variables (ref. class)</th>
<th>LR</th>
<th>Crude adjusted*</th>
<th>GAM*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (female)</td>
<td>Male</td>
<td>1.550</td>
<td>n.s.</td>
</tr>
<tr>
<td>Age group (15-34) (ref.)</td>
<td>0-14</td>
<td>0.749</td>
<td>0.785</td>
</tr>
<tr>
<td>Alcohol (No)</td>
<td>Yes</td>
<td>2.402</td>
<td>1.635</td>
</tr>
<tr>
<td>Drugs (No)</td>
<td>Yes</td>
<td>5.166</td>
<td>2.761</td>
</tr>
<tr>
<td>Homeless (No)</td>
<td>Yes</td>
<td>5.459</td>
<td>0.664</td>
</tr>
<tr>
<td>HIV (No)</td>
<td>Yes</td>
<td>5.990</td>
<td>3.420</td>
</tr>
<tr>
<td>Migrant (PT)</td>
<td>Migrant</td>
<td>2.134</td>
<td>2.672</td>
</tr>
<tr>
<td>Imprisonment (No)</td>
<td>Yes</td>
<td>2.264</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

n.s., Not selected (stepwise method).

* Final model, using a stepwise selection method.

Not statistically significant

$p=0.047$, AIC: 5308 to 5296

Case study IV

Modelling the time to detection of urban tuberculosis in two big cities in Portugal: a spatial survival analysis

C. Nunes, B. M. Taylor

- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, Lisboa, Portugal
- Faculty of Health and Medicine, Lancaster University, Lancaster, UK

Fig. 1. Associations between individual risk characteristics and default treatment from both multiple regression models: Logistic regression (LR) and Generalized Additive Model (GAM). (a) Crude and adjusted odds ratio; (b) odds of failure over our study region, having adjusted for the other risk factors (spatial component of the GAM).
Table 1
Descriptive statistics for Lisbon and Oporto areas

<table>
<thead>
<tr>
<th>Variables</th>
<th>Lisbon</th>
<th>Oporto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1028 (38.0)</td>
<td>676 (35.9)</td>
</tr>
<tr>
<td>Male</td>
<td>1678 (62.0)</td>
<td>1207 (64.1)</td>
</tr>
<tr>
<td>Alcoholic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>322 (11.9)</td>
<td>253 (13.44)</td>
</tr>
<tr>
<td>No</td>
<td>2384 (88.1)</td>
<td>1630 (86.56)</td>
</tr>
<tr>
<td>Intravenous drug user</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>197 (7.3)</td>
<td>107 (5.7)</td>
</tr>
<tr>
<td>No</td>
<td>12509 (92.7)</td>
<td>776 (94.3)</td>
</tr>
<tr>
<td>Prison inmate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>32 (1.7)</td>
<td>25 (1.3)</td>
</tr>
<tr>
<td>No</td>
<td>12674 (98.8)</td>
<td>858 (98.7)</td>
</tr>
<tr>
<td>Homeless</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>45 (1.7)</td>
<td>25 (1.3)</td>
</tr>
<tr>
<td>No</td>
<td>2661 (98.3)</td>
<td>1858 (98.7)</td>
</tr>
<tr>
<td>HIV positivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>495 (18.3)</td>
<td>175 (9.3)</td>
</tr>
<tr>
<td>No</td>
<td>2211 (81.7)</td>
<td>1708 (90.7)</td>
</tr>
<tr>
<td>Migrant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1972 (72.9)</td>
<td>1814 (96.3)</td>
</tr>
<tr>
<td>Yes</td>
<td>794 (27.1)</td>
<td>65 (3.7)</td>
</tr>
</tbody>
</table>

HIV = human immunodeficiency virus.

Table 2
Estimated RRs and 95% CIs for Lisbon and Oporto

<table>
<thead>
<tr>
<th></th>
<th>Lisbon</th>
<th>Oporto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RR (95% CI)</td>
<td>RR (95% CI)</td>
</tr>
<tr>
<td>Sex</td>
<td>Male(^t)</td>
<td>1.19 (1.09–1.29)</td>
</tr>
<tr>
<td></td>
<td>Female(^t)</td>
<td>1.03 (0.91–1.18)</td>
</tr>
<tr>
<td>Alcoholic</td>
<td>No(^t)</td>
<td>0.96 (0.82–1.16)</td>
</tr>
<tr>
<td>Intravenous</td>
<td>Drug user(^t)</td>
<td>1.13 (0.77–1.62)</td>
</tr>
<tr>
<td></td>
<td>Homeless(^t)</td>
<td>1.02 (0.75–1.43)</td>
</tr>
<tr>
<td></td>
<td>HIV(^t)</td>
<td>0.85 (0.76–0.95)</td>
</tr>
<tr>
<td></td>
<td>Migrant(^t)</td>
<td>0.87 (0.80–0.96)</td>
</tr>
<tr>
<td></td>
<td>(\sigma)</td>
<td>1.26 (1.19–1.39)</td>
</tr>
<tr>
<td></td>
<td>(\psi)</td>
<td>3490 (1618–7143)</td>
</tr>
</tbody>
</table>

* RRs > 1 are associated with shorter diagnostic delays; RRs < 1 are associated with longer delays. It should be noted that the effect of age is not indicated in this table (see Figure 2).

\(^t\) Class for each estimation is presented (all binary variables).

RR = relative risk; CI = credibility interval; HIV = human immunodeficiency virus.
Estimated baseline hazard

Plot of P[exp(Y) < 0.85] (the probability that the covariate-adjusted relative risk is less than 0.85);

- In both cities, sex and HIV are related to delays (Men and HIV + diagnosed faster)?
- There are different patterns in the two cities (mainly in relation to age and being emigrant)
- after the incorporation of these variables, there is still a significant spatial variation - new studies
GOALS OF THIS RESEARCH LINE AT ENSP

BACKGROUND

— TB in Portugal
— Spatiotemporal epidemiology - definition

4 CASE STUDIES

— Identification of areas of risk of incidence - methodological
— Identification of risk areas of incidence and associated factors
— Identification of factors associated with treatment dropout
— Identification of factors associated with longer diagnostic times

CONCLUSIONS

— TB in Portugal
— Spatiotemporal epidemiology - definition

TUBERCULOSIS

— In terms of incidence, relatively stable clusters in the study period (Lisbon and Porto), with Porto decreasing faster;
— Situations of anomalous magnitudes that are important to analyse in detail;
— Local determinants - the importance of local characteristics in high incidence rates areas - support for local action strategies;
— BUT: Importance of notification rate: incidence rate versus incidence rate notified and homogeneous (or not?) in space and time.
Spatiotemporal epidemiology

- It is an important tool in the epidemiological interpretation of health phenomena and, consequently, in the quality of decisions based on this evidence;
- Although these studies have methodological specificities with some complexity, they are powerful as a first approach on new risk factors (to be investigated later in individual studies) or to be developed based on determinants already solidly grounded in the literature;
- It allows greater precision and safety in decisions and intervention, leading to greater effectiveness in Public Health interventions.

CONCLUSIONS

Main published works (TB and space/time)

THANKS!

CARLA NUNES